您还未登录! 立即登录
积分: 0
消息
提醒
设置
我的帖子
首页
发帖
账号
自动登录
找回密码
密码
登录
立即注册
只需一步,快速开始
手机号码,快捷登录
登录
立即登录
立即注册
其他登录
QQ
微信
闲聊
首页
Portal
分类
BBS
资讯
图片
视频
圈子
Group
导读
标签
发现
搜索
搜索
热搜:
外空
太空
航天
本版
文章
帖子
用户
帖子
收藏
勋章
任务
相册
留言板
门户
导读
排行榜
设置
我的收藏
退出
0
0
0
返回列表
了解太空中目标天体的精确位置有多难?
[ 复制链接 ]
发布新帖
行星
限制会员
401
主题
-1
回帖
-1088
积分
限制会员
限制会员, 积分 -1088, 距离下一级还需 1088 积分
限制会员, 积分 -1088, 距离下一级还需 1088 积分
积分
-1088
私信
科普知识
617
0
2020-12-23 10:02:14
在人类太空旅行的历史中,每一次冒险都在提醒我们,我们对现实的测量是多么不精确。
北京时间12月23日消息,在20世纪60年代的早期太空竞赛中,如果是以宇宙飞船导航所需的精确度而论,美国和苏联的科学家实际都不清楚
火星
、金星等行星的具体位置。这听起来有点可笑。当然,当宇宙飞船到达这些行星附近时,他们还是能大致知道目标会在哪里。但是,这里的“大致”可能意味着1万或10万公里的偏移量。行星的位置,即它们的星历表,依赖于以极高精度对其轨道随时间推移的变化情况进行校准。但唯一合理的方法是直接测量,就像古代的水手需要沿着岛屿或海岸线航行,以便确定纬度和经度一样。
关于这个问题,一个很不体面的例子发生在1961年初。从苏联发射金星1号(Venera 1)探测器开始,人类向金星发射探测器的计划便拉开了序幕。苏联和美国科学家都希望能最早确定金星的位置,并以此来精确计算天文单位——当时被定义为
地球
中心与
太阳
中心之间的平均距离。在地球上,可以通过测量从金星上反射的雷达信号来确定距离。几个月后,苏联人自豪地宣布了基于金星的天文单位测量改进方法,但美国人很快发现,这与他们自己的雷达测量结果相差约10万公里。美国人兴高采烈地嘲笑苏联人,说他们可能发现了一颗新的行星。
回想起来,这台苏联探测器——原本计划在测距结果宣布的时候飞掠金星——之前已经经历了一系列的挫折,包括失败的热控制和姿态控制失灵。尽管它可能确实经过了金星附近的某个位置,但我们永远也无法确切知道它与该标记位置的距离,因为在那一点上,地球与探测器的所有通讯都停止了。
错误认定金星的位置可能会带来灾难性的后果。金星1号探测器可能因为偏离太多而无法获得任何有用的数据,它也可能直接撞向行星,造成不光彩的坠毁。可以想见,在这些惨痛的教训之后,科学家们会多么努力地确定太阳系天体的位置,与之相关星历表也编制得越来越厚,越来越精确。然而,即使有了长足的进步,精确定位航天器及其行星目标所面临的基本问题仍未完全解决。在某种意义上,问题反而愈加尖锐。
如今,位于美国加利福尼亚州的美国航空航天局(NASA)喷气推进实验室是星历表的主要编制机构之一,提供了精心编写并不断更新的数据,帮助我们确定行星、卫星、彗星、流星群和小行星的位置。这就像农民所用的年历,只不过是用于行星探索。然而,随着探索范围越来越远,我们的目标越来越新奇,我们所面临的挑战也越来越大。
已经有机构在草拟一项雄心勃勃的计划,希望利用强大的激光,推动带有轻型帆的微型“纳米飞船”(nanocraft),一路航行到南门二(半人马座α)恒星系统。该系统距离地球超过4光年,如果以20%的光速(约每小时2.16亿公里)前进,需要花费至少20年的时间。在正确的时间到达另一个恒星系统的正确位置,这个问题远比到达遥远的太阳系边缘星球(如冥王星)复杂得多,虽然前往冥王星就已经够困难的了。
2006年,NASA的“新视野号”探测器以破纪录的速度发射,在9年多的时间里飞到冥王星附近(在
木星
引力帮助下),飞行距离近50亿公里。利用地球上的望远镜观测,以及对冥王星的轨道运动进行精细的计算机模拟,我们可以确定该探测器在天空中的位置,精确度可达约0.00014度角。然而,冥王星太过遥远,如此微小的不确定性也会导致约13000公里的位置误差,足以严重阻碍近距离飞掠任务。更加复杂的是,新视野号在轨道上经历了难以预测的漂移,这是钚发电机产生的不均匀热辐射所导致的。
新视野号终于在2015年7月与冥王星相遇,这让那些在发射之后等待了相当长一段时间的科学家们松了一口气。它以12500公里的距离飞掠冥王星。最后,为了快速掠过冥王星及其卫星,新视野号在接近正确路径的任何地方都要进行细致的位置测量,并使用探测器自带的相机进行航向修正。这一过程需要极大的耐心。
现在,让我们来比较一下冥王星与距离太阳最近的恒星——比邻星(Proxima)。比邻星位于半人马座,是半人马座α三合星的第三颗星,以每秒约32.19公里的速度相对太阳运动。不过,每秒0.01公里的最小有效数字,意味着在为期20年、600多万公里的任务中会累积相当大的位置不确定性。这还是恒星,一个明亮的、比较容易研究的天体,而恒星系统中的行星亮度会下降10亿倍,其位置也更加难以确定。与新视野号一样,星际探测器很可能不得不随时跟踪自己的目标,并且必须自主完成,因为与地球的来回通信就需要数年的时间。
至于微型航天器能否携带必要的计算工具,或者是否具备追踪目标所需的感知和操纵能力,还有待观察。明亮的恒星本身可能就是最好的标记,可以和太阳一起作为导航灯塔。从激光二极管发射的微弱脉冲可以提供调整方向的推力,但更关键的是,数百甚至数千台具有人工智能的纳米飞船在发射之后,每一台都具有相互学习的能力,或许可以通过大规模冗余和牺牲多数来达到时间和空间目标。然而,当你试图用一颗子弹去拦截另一颗飞来的子弹——无论是恒星还是行星——时,差错可能是在所难免的。
不难发现,在数千或数百万公里的范围内,位置的不确定性可能会给太空探险者带来麻烦。但奇怪的是,绕轨道运行的恒星和行星具有一些基本的物理学属性,这些属性取决于非常小的位置不确定性,并且可以毫不含糊地决定整个系统的生存。究其根源,在于引力物体之间的动力混乱现象,以及混乱但数学上可绘制的不稳定性,还有天体运动的不可预测性。尽管科学家自19世纪80年代就发现了混沌现象,但直到20世纪80年代,研究人员才开发出专门用途的计算机,以精确模拟太阳系中行星受引力驱动的运动。这些模拟揭示了我们生活在一个多么混乱的空间中。
结果表明,如果在数千万年到数十亿年的时间里追踪太阳系内物体的运动,诸如
水星
这样的行星位置出现毫米级的变化,也会产生很大的影响:未来的轨道可能相对平淡无奇,但也可能使内太阳系变得不稳定,行星被甩向太阳,或者逃逸到星际空间的轨道上,甚至将两颗行星置于相互碰撞的轨道上。
如此微小的变化会导致如此截然不同的结果,这让许多希望世界具有某种可预测性的人无法接受。这就说到了人类作为一个物种,似乎一直在努力想要做到的一些事情。我们很希望所谓的现实是固定不变的,或者至少不是变幻莫测的。但现实很少如此。
在将航天器发射到其他行星,甚至其他恒星的过程中,我们别无选择,只能承认目前的这种不精确性。现实就是如此残酷,我们对外太空的了解太有限了。甚至自然定律都是基于全然不完美的测量得出的推论,无论是行星轨道和引力,还是代数的逻辑和符号处理——后者是通过人脑和人脑开发的机器来“测量”的。令人惊奇的是,这些定律能够很好地模拟和预测物理世界的各个方面,几千年来一直在帮助我们,并使我们感到安心。今天,我们似乎已经设法扭转了这个问题,可以预测自然中可能发生的各种混沌,从不稳定的天气条件到不稳定的股票市场,当然还有行星。
这就是为什么诚实面对局限性是一件美好的事情,因为我们能因此找到跨越空间、时间并理解界限性的方法。20世纪60年代的火箭科学家们试图掌握金星和其他行星的位置,他们甚至都没有意识到,自己在某些方面已经成为先驱。他们不仅是在穿越虚无的太空,试图确定几乎不可能定位的天体,更是在认识现实本身的根本性质。(任天)
新浪网
点赞
0
收藏
0
回复
举报
B
Color
Image
Link
Quote
Code
Smilies
您需要登录后才可以回帖
立即登录
点评
高级模式
本版积分规则
回帖并转播
回帖后跳转到最后一页
返回
浏览过的版块
土星
航天
火星
国外航天
木星
天文知识
中国航天
宇宙
天文理论
图片
首页
分类
资讯
发现
我的